Giriş Formu

Reklam: 160x600
Google Reklamları

Sponsor

Reklam ver

Ezber Bozuluyor Matematik 6 Günde Bitiyor. Nasıl mı? Tıklayın!

Eğitim Geçmişinizde Boşluk Kalmasın, İstediğiniz Okul Hayal Olmasın!

Google Reklamlari

Üçgen ve Kenarları Arasındaki Bağıntılar
---

 

http://resimalani.com//oku.png       http://resimalani.com/izle.png      

http://resimalani.com/cikmissorular       http://resimalani.com//yapraktest.png

Üçgen ve Kenarları Arasındaki Bağıntılar

Açı-Kenar Bağıntıları  

1. Bir üçgende ölçüsü büyük olan açının karşısındaki kenar uzunluğu, ölçüsü küçük olan açının karşısındaki kenar uzunluğundan daha büyüktür.

ABC  üçgeninde  m(A) > m(B) > m(C)
                                 a  >     b     >      c

Terside geçerlidir. Uzun kenarı gören açı kısa kenarı gören açıdan daha büyüktür.

İkizkenar üçgenden de bildiğimiz gibi eşit açıların karşılarındaki kenarlar eşittir.

m(B) = m(C) => |AB| = |AC|

m(A) < m(B) = m(C) ise

|BC| < |AB| = |AC| olur.

  •  Bir üçgende bir tane geniş açı olabileceğinden geniş açının karşısındaki kenar daima en büyük kenar olur.
2. Bir üçgende herhangi bir kenarın uzunluğu diğer iki kenarın uzunlukları toplamından küçük farkının mutlak değerinden büyüktür.

ABC üçgeninde 

lb - c l <a < (b + c)

Diğer kenarlar için de aynı durum geçerlidir.

|a – c| < b < (a + c) ve |a – b| < c < (a + b) olur.

3. Dik, dar ve geniş açılı üçgenlerde kenarlar arasındaki ilişkiler.

a. Bir dik üçgende

kenarlar arasında

a2 = b2 + c2 bağıntısı vardır.

b. Dar açılı üçgen

b ve c sabit tutulup A açısı küçültülürse a da küçülür.

m(A) < 90° Û a2 < b2  + c3
c. Geniş açılı üçgen 

b ve c sabit tutulup A açısı büyütülürse a da büyür.

m(A) < 90° Û a2 > b2  + c3
4. Çeşitkenar bir üçgende aynı köşeden çizilen yükseklik, açıortay ve kenarortay uzunluklarının sıralanması,

|AH| = ha ; yükseklik

|AN| = nA ; açıortay

|AD| = Va ; kenarortay

ha< nA <Va

5. Çeşitkenar bir üçgende, açı, açıortay, kenarortay ve yükseklik arasındaki sıralama;

ABC üçgeninde a, b, c kenar uzunluklarıdır. 

m(A) > m(B) > m(C) olduğuna varsayalım. 

Bu durumda üçgende

kenarlar :           a > b > c

yükseklikler :     ha < hb < hc

Açıortaylar :     nA < nB < nC

Kenarortaylar : Va < Vb < Vc

şeklinde sıralanırlar. Yani üçgenin yardımcı elemanları kenarlarının sırasına ters olarak sıralanır.

  •  Eşkenar ve ikizkenar üçgen için bu sıralamalar geçerli değildir.
6. Bir kenarları ortak olan içiçe iki üçgenden içtekinin çevresi daha küçük olur.

 

|BD| + |DC| < |AB| + |AC|
  • ABCD bir dörtgen, a, b, c, d kenar uzunlukları [AC] ve [BD] köşegenlerdir.

ABCD dörtgeninde karşılıklı kenarların uzunlukları toplamı, köşegenlerin uzunlukları toplamından küçüktür.

a + c < |AC| + |BD| ve b + d < |AC| + |BD|

köşegen uzunlukları toplamı çevreden daha büyük ve çevrenin yarısından daha küçük olamaz.

 

  • İç içe şekillerde içteki şeklin çevresi daha küçük olacağından

|DA| + |AB| + |BC|

toplamı |DE| + |EF| + |FC|

toplamından daha büyüktür. 

7. ABC üçgeninin içindeki herhangi bir P noktası için;

|AP| + |BP| + |CP|

toplamı ABC üçgeninin çevresinden büyük, çevresinin yarısından küçük olamaz.

 
  • Burada ve Çevre değerleri sınır değer değildir.
 
ÜÇGEN

 

Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimine üçgen denir.

AB] È[AC]È [BC] = ABC dir.  

Burada;

  A, B, C noktaları üçgenin

 köşeleri,

[AB], [AC], [BC] doğru parçaları üçgenin

 kenarlarıdır.

BAC, ABC ve ACB açıları üçgenin iç açılarıdır.  

|BC| = a, |AC| = b, |AB| = c

uzunluklarına üçgenin kenar uzunlukları denir. iç açıların bütünleri olan açılara dış açılar denir. 

 

ABC üçgeni bir düzlemi; üçgenin kendisi, iç bölge, dış bölge, olmak üzere üç  bölgeye ayırır. 

ABC È {ABC iç bölgesi} = (ABC) (üçgensel bölge)

  • ÜÇGEN ÇEŞiTLERi

1. Kenarlarına göre üçgen çeşitleri

a. Çeşitkenar üçgen 

Üç kenar uzunlukları da farklı olan üçgenlere denir.

 

b. ikizkenar Üçgen 

Herhangi iki kenar uzunluklarıeşit olan üçgenlere denir.

 

c. Eşkenar Üçgen 

Üç kenar uzunluklarıda eşit olan üçgenlere denir.

 

2. Açılarına göre üçgenler

a. Dar açılı üçgen 

Üç açısının ölçüsü de 90° den küçük olan üçgenlere dar açılıüçgen denir.

 

b. Dik açılı üçgen 

Bir açısının ölçüsü 90° ye eşit olan üçgenlere denir. 

Dik üçgen olarak adlandırılır.

c. Geniş açılı üçgen 

Bir açısının ölçüsü 90° den büyük olan üçgenlere denir.

Bir üçgende bir tek geniş açı olabilir.

 

  • ÜÇGENİN TEMEL ve YARDIMCI  ELEMANLARI

Üçgenin kenarları’ na ve açıları’ na temel elemanlar, Yükseklik, kenarortay ve açıortaylarına yardımcı elemanlar denir.

1. Yükseklik 

Bir köşeden karşı kenara veya karşı kenarın uzantısına çizilen dik doğru parçasına yükseklik denir.

ha   ®   a kanarına ait yükseklik.

hc   ®   c kenarına ait yükseklik

yüksekliklerin kesim noktasına üçgenin Diklik Merkezi denir.

 

2. Açıortay

Üçgenin bir köşesindeki açıyıiki eş parçaya ayıran ışına o köşenin açıortayıdenir.

nA  ®  A köşesine ait iç açıortay  

n'A ®   A köşesine ait dış açıortay

 

3. Kenarortay

Üçgenin bir kenarının orta noktasını karşısındaki köşe ile birleştiren doğru parçasına o kenara ait kenarortay denir.

|AD| = Va , |BE| = Vb  olarak ifade edilir.

 

Dik üçgende, hipotenüse ait kenarortay hipotenüsün yarısına eşittir.

|BC| = a (hipotenüs) 

 

ÜÇGENDE AÇI ÖZELLİKLERİ

1. Üçgende iç açıların ölçüleri toplamı180° dir.

[AD // [BC] olduğundan,

iç ters ve yöndeş olan açılar bulunur.

a + b + c = 180°

m(A) + m(B) + m(C) = 180°

Üçgenin iç açılarının toplamı180° dir.

İç açılara komşu ve bütünler olan açılara dış açı denir.

2. Üçgende dış açıların ölçüleri toplamı360° dir.

a' + b' + c' = 360°

m(DAF)+m(ABE)+m(BCF)=360°

 

3. Üçgende bir dış açının ölçüsü kendisine komşu olmayan iki iç açının ölçüleri toplamına eşittir.

[AB] // [CE olduğundan

 

m(ACD)=a+b

 

m(DAC) = m(A') = b + c

m(DBE) = m(B') = a + c

m(ECF) = m(C') = a + b

Yandaki şekilde a, b, c bulundukları açıların ölçüleri ise,

 

m(BDC) = a+b+c

 

4. iki kenarı eş olan üçgene ikizkenar üçgen denir.ABC üçgeninde:

 

lABl=lACl Û m(B)=m(C)

 

Burada A açısına ikizkenar üçgenin tepe açısı, [BC] kenarına ise tabanıdenir.

Tepe açısına m(BAC) = a dersek

Taban açıları

 

5. Üç kenarıeş olan üçgene eşkenar üçgen denir.

ABC üçgeninde

|AB| = |BC| = |AC|

m(A) = m(B) = m(C) = 60°

Eşkenar üçgen, ikizkenar üçgenin bütün özelliklerini taşır.

 

  • ÜÇGENDE AÇIORTAYLAR

1. Üçgende iç açıortaylar bir noktada kesişirler. Bu nokta üçgenin içteğet çemberinin merkezidir.

Açıortayların kesiştiği noktadan kenarlara çizilen dikmelerin uzunluklarıeşittir. (Çemberin yarıçapı)

2. Üçgende iki dış açıortay ile üçüncü iç açıortay bir noktada kesişirler. Bu nokta üçgenin dıştan teğet çemberlerinden birinin merkezidir. (Üç dış teğet çember vardır.)

[AD], [BD] ve [CD] açıortaylarından herhangi ikisi verildiğinde üçüncüsünün de kesinlikle açıortaydır.

3. iki iç açıortayın kesişmesiyle oluşan açı; ABC üçgeninde ve BDC üçgeninde iç açılar toplamı  yazılırsa

 

4. iki dış açıortayın kesişmesiyle oluşan açı; ABC üçgeninin dış açılar toplamıve BDC üçgeninin iç açılar toplamını yazarsak

 

5. Bir iç açıortay ile bir dış açıortayın kesişmesiyle oluşan açı,

ABC üçgeninin C açısının dış açıortayı ile B açısının iç açıortayı arasındaki açının ölçüsü A açısının ölçüsünün yarısıdır.

 

  • Burada D noktası dış teğet çemberlerden birinin merkezi olduğundan, A dan çizilen dış açıortayda D noktasından geçer.

6. Açıortayla yükseklik arasında kalan açı; ABC üçgeninde [AD] A açısına ait açıortay ve [AH] yüksekliktir.

Açıortayla yükseklik arasındaki açıya m(HAD) = x dersek

 Bir açı ve açıortayını başka bir doğrunun kestiği durumlarda dış açı özelliği kullanılarak bütün açılar bulunabilir.

 

 

 

 
 
 
 

Yorumlar 

 
-1 #8 meliss 01-04-2014 11:18
:lol: bence süper ve ötesi....
Alıntı | Yöneticiye raporla
 
 
-2 #7 keramettin 13-01-2014 19:17
ne çok şey istiyonuz akadaş bi susun be
Alıntı | Yöneticiye raporla
 
 
-3 #6 şlkk 24-12-2013 21:00
8.sınıf mı bu konu??? Lütfen cevap please... :D :lol:
Alıntı | Yöneticiye raporla
 
 
0 #5 asdfghjkl 24-12-2013 06:41
bu site bana çok yardımcı oldu.matematik performansımıda burdan yaptım allah sizden razı olsun çook teşekkür ediyorum..
Alıntı | Yöneticiye raporla
 
 
+3 #4 gokan 09-12-2013 18:13
yıllık ödevim üçgende kenarlar ve açılar arasındaki bağıntı bu yazdığınzla aynımı oluyor bunu yazsam doğru olurmu ödevim ?
Alıntı | Yöneticiye raporla
 
 
0 #3 sss 07-05-2013 18:21
süper yaaaa
:lol:
Alıntı | Yöneticiye raporla
 
 
-11 #2 dsfghjk 28-03-2013 16:12
Offffffffffffff fffffffffffffff fffffffffffffff fffffffffffffff ffffffffffff
Alıntı | Yöneticiye raporla
 
 
+11 #1 sagençler 02-01-2013 21:26
bunun bide sbs-oks de çıkan ssorularını ve çözümlerini verseniz dua ederim size
Alıntı | Yöneticiye raporla
 

Yorum ekle



Matematik





Ziyaretçilerimiz yazdıkları yorumdan sorumludur.
Her hangi açılacak bir davada IP adresi ve diğer bilgiler paylaşılacaktır.


Güvenlik kodu
Yenile

< Önceki   Sonraki >

Matematik | Teog Matematik | YGS Matematik | LYS Matematik | ALES Matematik