Giriş Formu

Reklam: 160x600
Google Reklamları

Sponsor

Reklam ver

Buraya Cmle Reklam Verebilirsiniz. reklam@matematikvegeometri.com

Google Reklamlari

Mutlak Değer
---

 

http://resimalani.com//oku.png      http://resimalani.com/izle.png     

http://resimalani.com/indir.png      http://resimalani.com/coz.png

 
Mutlak Değer  

MUTLAK DEğER

 

A. TANIM

Sayı doğrusu üzerinde x reel (gerçel) sayısının orijine olan uzaklığına x in mutlak değeri denir.

|x| biçiminde gösterilir.

Bütün x gerçel (reel) sayıları için, |x| ³ 0 dır.

 

 

B. MUTLAK DEğERıN ÖZELıKLERı

  1. |x| = |–x| ve |a – b| = |b – a| dır.

  2. |x × y| = |x| × |y|

  3. |xn| = |x|n

  4. y ¹ 0 olmak üzere,

  1. |x| – |y| £ |x + y| £ |x| + |y|

  2. a ³ 0 ve x Î olmak üzere,

|x| = a ise, x = a veya x = –a dır.

  1. |x| = |y| ise, x = y veya x = –y dir.

  2. x değişken a ve b sabit birer reel (gerçel) sayı olmak üzere,

      |x – a| + |x – b|

ifadesinin en küçük değeri a £ x £ b koşuluna uygun bir x değeri için bulunan sonuçtur.

  1. x değişken a ve b sabit birer reel (gerçel) sayı ve

      K = |x – a| – |x – b|

olmak üzere,

x = a için K nin en küçük değeri, x = b için K nin en büyük değeri bulunur.

  1. a, pozitif sabit bir reel sayı olmak üzere,

a) |x| < a ise, –a < x < a dır.

b) |x| £ a ise, –a £ x £ a dır.

  1. a, pozitif sabit bir reel sayı olmak üzere,

a) |x| > a ise, x < –a veya x > a dır.

b) |x| ³ a ise, x £ –a veya x ³ a dır.

  • a < b ve c Î olmak üzere,

      |x + a| + |x + b| = c

eşitliğinin çözüm kümesini bulmak için 2 yöntem vardır.

 

1. Yöntem

Mutlak değerlerin içlerinin kökleri bulunur.

x + a = 0 ise, x = –a dır.

x + b = 0 ise, x = –b dir.

Buna göre, üç durum vardır. (–b < –a olsun.)

–b £ x, –b < x £ –a ve x > –a dır. Bu üç durumda inceleme yapılır.

1. Durum

–b £ x ise, –x – a – x – b = c olur. Bu denklemin kökü –b £ x koşulunu sağlıyorsa, verilen denklemin de köküdür.

2. Durum

–b < x £ –a ise, –x – a + x + b = c olur.

Bu denklemin kökü –b < x £ –a koşulunu sağlıyorsa, verilen denklemin de köküdür.

3. Durum

x > –a ise, x + a + x + b = c olur. Bu denkleminin kökü x > –a koşulunu sağlıyorsa, verilen denklemin de köküdür.

3 durumdan elde edilen köklerin oluşturacağı küme, verilen denklemin çözüm kümesidir.

 

2. Yöntem

a < b ve c Î olmak üzere,

      |x + a| + |x + b| = c ... ()

eşitliğinin çözüm kümesinde aşağıdaki üç durum geçerlidir.

(x + a = 0 ise, x = –a) ve (x + b = 0 ise, x = –b)

  1. Sayı doğrusunda –b ile –a arasındaki uzaklık c ye eşit ise,

() daki denklemin çözüm kümesi,

      Ç = [–b, –a] dır.

  1. Sayı doğrusunda –b ile –a arasındaki uzaklık c den büyük ise,

() daki denklemin çözüm kümesi,

      Ç = Æ dir.

  1. Sayı doğrusunda –b ile –a arasındaki uzaklık c den küçük ise,

() daki denklemi sağlayan iki sayı vardır. Bu sayıları bulmak için, c den, sayı doğrusunda –b ile –a arasındaki uzaklık çıkarılır, farkın yarısı bulunur. Son bulunan değer D olsun. Buna göre, () daki denklemi sağlayan sayılardan biri –b – D diğeri –a + D dir. Bu durumda () daki denklemin çözüm kümesi,

      Ç {–b – D, –a + D} olur.

 

 


 

 

Yorumlar 

 
+1 #1 mehmet06 10-04-2011 16:51
¶,£ bu işaretler konu anlatımında ne anlama geliyor??
Alnt | Yneticiye raporla
 

Yorum ekle



Matematik





Ziyaretçilerimiz yazdıkları yorumdan sorumludur.
Her hangi açılacak bir davada IP adresi ve diğer bilgiler paylaşılacaktır.


Gvenlik kodu
Yenile

< nceki   Sonraki >

Matematik | Teog Matematik | YGS Matematik | LYS Matematik | ALES Matematik