Giriş Formu

Reklam: 160x600
Google Reklamları

Sponsor

Reklam ver

Ezber Bozuluyor Matematik 6 Günde Bitiyor. Nasıl mı? Tıklayın!

Eğitim Geçmişinizde Boşluk Kalmasın, İstediğiniz Okul Hayal Olmasın!

Google Reklamlari

Karmaşık Sayılar
---

 

http://resimalani.com//oku.png      http://resimalani.com/izle.png     

http://resimalani.com/coz.png

 

 

 

 
Karmaşık Sayılar (Mat-2)  

KARMAŞIK SAYILAR

 

Karmaşık Sayılar videolu konu anlatımları için tıklayınız

 

I. KARMAŞIK SAYILAR KÜMESİ

Tanım

sayısına sanal sayı (imajiner sayı) birimi denir. ve

ile gösterilir.

 

Uyarı

a, b pozitif gerçel sayı ve

x, y negatif gerçel sayı olmak üzere,

 

 

A. i NİN KUVVETLERİ

     

olmak üzere,

i0 = 1 dir.

i1 = i dir.

i2 = –1 dir.

i3 = i2 × i1 = (–1) × i = –i dir.

i4 = i2 × i2 = (–1) × (–1) = 1 dir.

i5 = i4 × i1 = 1 × i = i dir.

Görüldüğü gibi i nin kuvvetleri ; 1, i, –1, –i değerlerinden birine eşit olmaktadır.

 

Sonuç

Sanal sayı biriminin (i nin) kuvveti x olsun. x tam sayısı 4 ile bölündüğünde,

kalan 0 ise, ix ifadesinin eşiti 1,

kalan 1 ise, ix ifadesinin eşiti i,

kalan 2 ise, ix ifadesinin eşiti –1,

kalan 3 ise, ix ifadesinin eşiti –i dir.

Buna göre, n tam sayı olmak üzere,

i4n= 1,

i4n+1 = i,

i4n+2 = –1,

i4n+3 = –i dir.

 

Tanım

a ve b birer reel (gerçel) sayı ve olmak üzere,

z = a + bi şeklinde ifade edilen z sayısına karmaşık (kompleks) sayı denir.

Karmaşık sayılar kümesi ile gösterilir. Buna göre,

z = a + bi karmaşık sayısında;

a ya karmaşık sayının reel (gerçel) kısmı,

b ye karmaşık sayının imajiner (sanal) kısmı denir.

z = a + bi ise

Re(z) = a

İm(z) = b

şeklinde gösterilir.

 

Uyarı

Her reel (gerçel) sayı imajiner kısmı 0 (sıfır) olan bir karmaşık sayıdır.

Buna göre, karmaşık sayılar kümesi reel sayılar kümesini kapsar. Yani, dir.

 

 

B. İKİ KARMAŞIK SAYININ EŞİTLİĞİ

Reel kısımları ve imajiner kısımları kendi aralarında eşit olan iki karmaşık sayı birbirine eşittir.

Kural

 

 

 

C. KARMAŞIK SAYILARIN ANALİTİK DÜZLEMDE BELİRTİLMESİ

Reel kısmı a, imajiner kısmı b olan karmaşık sayının; z = a + ib şeklindeki gösterimine karmaşık sayının standart (cebirsel) biçimi,
Z(a, b) biçimindeki gösterimine kartezyen koordinatlarıyla gösterilmiş biçimi denir.

Ox eksenine reel eksen, Oy eksenine de sanal (imajiner) eksen diyerek karmaşık sayıları gösterebileceğimiz karmaşık düzlemi elde ederiz.

Karmaşık sayılarla karmaşık düzlemin noktaları bire bir eşlenebilir.

z = a + bi karmaşık sayısının düzlemdeki görüntüsü (a, b) noktasıdır.

 

 

D. KARMAŞIK SAYININ EŞLENİĞİ

ve  i2 = –1 olmak üzere,

a + bi ve a + (–b)i karmaşık sayılarından birine diğerinin eşleniği denir.

z karmaşık sayısının eşleniği ile gösterilir.

Buna göre,

 

     

 

Kural

Bir karmaşık sayının eşleniğinin eşleniği kendisidir.

Buna göre,

     

 

 

Kural

Reel kat sayılı, ax2 + bx + c = 0 ikinci dereceden denkleminin köklerinden biri m + ni karmaşık sayısı ise diğeri m – ni sayısıdır.

 

 

E. KARMAŞIK SAYILARIN MUTLAK DEĞERİ (MODÜLÜ)

Karmaşık düzlemde, bir karmaşık sayıya karşılık gelen noktanın başlangıç noktasına (orijine) olan uzaklığına bu sayının mutlak değeri veya modülü denir.

z karmaşık sayısının mutlak değeri |z| ile gösterilir.

Yandaki dik üçgende Pisagor teoreminden de,

dir.

 

 

F. KARMAŞIK SAYILARDA İŞLEMLER

1. Toplama İşlemi

Karmaşık sayılar toplanırken, reel kısımlar kendi aralarında ve sanal kısımlar kendi aralarında toplanır. Buna göre,

i2 = –1 olmak üzere,

     

karmaşık sayıları verilmiş olsun. Bu durumda,

     

 

2. Çıkarma İşlemi

      z + (–w) = z – w

olduğuna göre, z sayısını w sayısının toplama işlemine göre tersi ile toplamak, z sayısından w sayısını çıkarmak demektir. Buna göre,

z ile w nin farkı, reel kısımların birbiri ile sanal kısımların birbiri ile farkına eşittir. Reel kısımların farkı, sonucun reel kısmını; sanal kısımların farkı, sonucun sanal kısmını verir. Buna göre,

i2 = –1 olmak üzere,

     

karmaşık sayıları verilmiş olsun. Bu durumda

     

 

3. Çarpma İşlemi

Karmaşık sayılarda çarpma işlemi, i2 = –1 olduğu göz önüne alınarak, reel sayılardakine benzer şekilde yapılır.

z = a + bi ve w = c + dolsun. Buna göre,

 

Sonuç

i2 = –1 ve z = a + bi olmak üzere,

     

 

Kural

i2 = –1 ve n tam sayı olmak üzere,

 

4. Bölme İşlemi

z1 × (z2)–1 sayısına z1 in z2 ye bölümü denir ve biçiminde gösterilir.

Karmaşık sayılarda bölme işlemi, pay ile paydanın, paydanın eşleniği ile genişletilmesiyle yapılır. Yani,

z1 = a + bi ve z2 = c + di ise,

 

5. Eşlenik ve Mutlak Değerle İlgili Bazı Özellikler

z1 ve z2 birer karmaşık sayı olmak üzere,

 

G. KARMAŞIK DÜZLEMDE İKİ NOKTA ARASINDAKİ UZAKLIK

z = a + bi ve w = c + di  olsun.

      |z – w|

ifadesinin değeri z ile w sayısı arasındaki uzaklığa eşittir.

     

 

z sayısına karşılık gelen nokta A, w sayısına karşılık gelen nokta B olsun. Buna göre,

 

Kural

z, değişen değerler alan bir karmaşık sayı; w sabit bir karmaşık sayı ve r, pozitif reel sayı olmak koşuluyla

      |z – w| = r

eşitliğini gerçekleyen z noktalarının kümesi, karmaşık düzlemde, merkezi w ye karşılık gelen nokta ve yarıçapı r olan bir çember belirtir.

      |z – w| < r

eşitsizliğini gerçekleyen z noktalarının kümesi, karmaşık düzlemde, merkezi w ye karşılık gelen nokta ve yarıçapı r olan çemberin iç bölgesini belirtir.

 

 

II. KARMAŞIK SAYILARIN KUTUPSAL (TRİGONOMETRİK) GÖSTERİMİ

i2 = –1 olmak üzere, z = a + bi olsun.

     

 

z nin karmaşık düzlemdeki görüntüsü M(a, b) noktasıdır. z karmaşık sayısını orijine birleştiren doğrunun reel eksenle (Ox ekseniyle) pozitif yönde yaptığı açıya, z karmaşık sayısının argümenti denir ve

      arg(z) ile gösterilir.

olsun. Bu durumda,

şeklinde gösterilir.

Açının esas ölçüsü olan değere de esas argüment denir. Bu durumda esas argüment; negatif olmayan ve 360° den ( radyandan) küçük bir değerdir.

Yukarıdaki şekilde, OHM dik üçgeninden,

     

yazılır. Buradan,

 

Sonuç

i2 = –1 olmak üzere, z = a + bi olsun. z nin, mutlak değeri (orijine uzaklığı) |z| = r ve esas argümenti q olmak üzere,

      z = |z| × (cosq + isinq)

biçiminde yazılmasına, z karmaşık sayının kutupsal (trigonometrik) gösterimi denir.

z = |z| × (cosq + isinq) ifadesi z = r × cisq biçiminde kısaca gösterilebilir.

 

Tanım

i2 = –1 olmak üzere, z = a + bi olsun.

Karmaşık sayının mutlak değeri ile argümentinden oluşan sıralı ikiliye bu sayının kutupsal koordinatları denir. z nin kutupsal koordinatları (|z|, q) veya (r, q) biçiminde gösterilir.

 

Kural

     

olmak üzere,

     

Buna göre, karmaşık sayıların çarpımının argümenti, bu sayıların argümentleri toplamına eşittir. Bu durumda,

     

 

Kural

     

olmak üzere,

     

Buna göre, iki karmaşık sayının bölümünün argümenti, bu sayıların argümentleri farkına eşittir. Bu durumda,

     

 

Kural

 

Sonuç

 

Sonuç

     

Buna göre, bir karmaşık sayının esas argümentinin ölçüsü radyan türünden a ise, bu karmaşık sayının eşleniğinin esas argümenti 2pa dır.

 

Kural

z0 = a + bi karmaşık sayısının karmaşık düzlemdeki görüntüsü M(a, b) noktası olsun.

arg(z – z0) = q

koşulunu sağlayan z karmaşık sayılarının görüntüsü MP yarı doğrusudur.

     

 

 

 

A. ORİJİN ETRAFINDA DÖNDÜRME

z = r × cisq karmaşık sayısının orijin etrafında pozitif yönde a kadar döndürülmesiyle elde edilen karmaşık sayı, v = r × cis(q + a) olur. Bu durum,

      v = z × (cosa + isina)

biçiminde de ifade edilebilir.

 

Uyarı

Bir karmaşık sayıyı negatif yönde q derece kadar döndürmek, o sayıyı pozitif yönde 360° – q kadar döndürmektir.

 

 

B. BİR KARMAŞIK SAYININ KÖKLERİ

olmak üzere,

zn = u denklemini sağlayan z sayısına u sayısının n inci kuvvetten kökü denir.

 

     

 

Sonuç

z2 = w eşitliğini sağlayan z sayıları birbirinin toplama işlemine göre tersidir.

Yani, z2 = w eşitliğini sağlayan z sayıları z1 ile z2 ise,

z1 = –z2 dir.

 

Kural

zn = w denkleminin kökleri aşağıdaki eşitliği sağlayan zk sayısında k yerine, 0, 1, 2, ... , (n – 1) yazılarak bulunur.

 


 

 

 

Yorumlar 

 
+6 #41 Tahsin Mızrak 03-04-2014 16:39
Hocam ellerinize sağlık,son güne proje ödevi bırakma huyum vardır,yine huyum tuttu ve ne yapıcağımı bilemedim,fakat özetiniz emin olun size büyük sevap kazandırdı :D :lol: :P
Alıntı | Yöneticiye raporla
 
 
+2 #40 xyz 30-03-2014 16:01
kutupsal ifadeyi standarta, standart ifadeyi kutupsala çevirme örnekleri de yazsaydınız keşke
Alıntı | Yöneticiye raporla
 
 
-7 #39 ELİF ÜZÜMLÜKAYA 24-02-2014 12:08
BEĞENMEDİM DAHA İYİ OLABİLİR :-x :P
Alıntı | Yöneticiye raporla
 
 
-4 #38 efdal 02-12-2013 20:37
aradaki - işaretini kaldırmak için cos(-Q)+sin(-Q) yazarsınız yani cis(-Q)şeklinde yazarsınız buradaki Qifadesi argümanı ifade eder
Alıntı | Yöneticiye raporla
 
 
+1 #37 belllaaaaaa 26-11-2013 20:23
çok teşekkürler gerçekten çok güzel anlatmışınız. :) :D :-) :P
Alıntı | Yöneticiye raporla
 
 
+3 #36 Alperen_B 05-11-2013 19:36
Takdire değer bir emek hocam. Sınava hazırlık notu diye dağıtıcam sınıfa altına yazıcam adreside mis :D
Alıntı | Yöneticiye raporla
 
 
+2 #35 ezoo 03-11-2013 17:21
cosß-sinß ise bu sayıyı cis olarak nasıl yazarız?
Alıntı | Yöneticiye raporla
 
 
+11 #34 Gizemli Matematikçi 17-09-2013 19:03
Hocam elini sağlık ck gzl anlatmışsınız :-)
Alıntı | Yöneticiye raporla
 
 
+2 #33 abdullah k. 04-09-2013 13:06
:zzz :D :lol: :-) 8) :-| :oops: :sad: :-? :-x :eek: :roll: :sigh: :o :cry: içinde herşey vardı yani
Alıntı | Yöneticiye raporla
 
 
-5 #32 ümmü çolak 21-04-2013 13:42
bu bilgiler dönem ödevime yardımcı oldu teşekkür ederim :)
Alıntı | Yöneticiye raporla
 

Yorum ekle



Matematik





Ziyaretçilerimiz yazdıkları yorumdan sorumludur.
Her hangi açılacak bir davada IP adresi ve diğer bilgiler paylaşılacaktır.


Güvenlik kodu
Yenile

< Önceki

Matematik | Teog Matematik | YGS Matematik | LYS Matematik | ALES Matematik