ÇOKGENLER
1. Çokgen
Bir düzlemde birbirinden farklı ve herhangi üçü doğrusal olmayan A1, A2, A3, … gibi n tane (n ³ 3) noktayı ikişer ikişer birleştiren doğru parçalarının oluşturduğu kapalı şekillere çokgen denir.
a. İçbükey (konkav) çokgenler: Bir çokgenin bazı kenar doğruları çokgeni kesiyorsa bu tür çokgenlere içbükey çokgen denir.
|
|
b. Dışbükey (konveks) çokgenler: Kenar doğrularının hiçbiri, çokgeni kesmiyorsa bu çokgenlere denir.dışbükey çokgen
|
|
c. Çokgenlerin elemanları
|
![]() |
- ıç bölgede kenarlar arasında oluşan açılara çokgenin iç açıları denir.
- ıç açılara komşu ve bütünler olan açılara çokgenin dış açıları denir.
- Köşeleri birleştiren kenarlar haricindeki doğru parçalarına köşegen adı verilir.
2. Dışbükey Çokgenlerin Özellikleri
a. İç açılar toplamı: Dış bükey bir çokgenin n tane kenarı var ise iç açılarının toplamı
| (n – 2) . 180° |
Üçgen için (3 – 2) . 180° = 180°
Dörtgen için (4 – 2) . 180° = 360°
Beşgen için (5 – 2) . 180° = 540°
b. Dış açılar toplamı: Bütün dışbükey çokgenlerde,
| Dış açılar toplamı =360° |
c. Köşegenlerin sayısı: n kenarlı dışbükey bir çokgenin
Bir köşeden (n – 3) tane köşegen çizilebilir.
- n kenarlı dışbükey bir çokgenin içerisinde, bir köşeden köşegenler çizilerek
(n – 2) adet üçgen elde edilebilir.
3. Düzgün Çokgenler
Bütün kenarlarının uzunlukları eşit ve bütün açılarının ölçüleri eşit olan çokgenlere düzgün çokgen denir.
|
|
| a. şekildeki düzgün altıgende olduğu gibi düzgün çokgenlerin köşelerinden daima bir çember geçer. Bu çembere çevrel çember denir. | ![]() |
b. Düzgün çokgenlerde eşit sayıda kenarı birleştiren köşegenler birbirine eşittir.
|
|AC|=|AE|=|BD| |AD|=|AD|=|| |
c. Kenar sayısı çift olan düzgün çokgenlerde karşılıklı kenarlar paraleldir.
|
[AF] // [CD], [AB] // [ED]….[AH] // [DE], [AB] // [FE]… |
d. Kenar sayısı tek olan düzgün çokgenlerde karşı kenara çizilen dik karşı kenarı ortalar. Köşeden kenarın ortasına çizilen doğru parçası kenara diktir şeklinde de ifade edilir.
|
|
e. n kenarlı düzgün bir çokgende
f. Konveks çokgenlerin dış açıları toplamı 360° olduğundan düzgün çokgenin bir dış açısı
4. Düzgün Çokgenin Alanı
| a. n kenarlı düzgün çokgenin bir kenarı a ve içteğet yarıçapı r ise alanı
|
![]() |
b.n kenarlı bir düzgün çokgende bir kenarı gören merkez açı
|
![]() |
Bir kenarına a dersek |
![]() |
DÖRTGENLERİN GENEL ÖZELLİKLERİ
| 1. Bir dörtgende komşu iki iç açının açıortaylarının oluşturduğu açının ölçüsü, diğer iki açının ölçüleri toplamının yarısına eşittir.
|
![]() |
| 2. Bir dörtgende karşı iki açının açıortayları arasındaki dar açının ölçüsü diğer iki açının ölçüleri farkının mutlak değerinin yarısına eşittir.
|
![]() |
| 3. Köşegenleri ve köşegenlerinin arasındaki açısının ölçüsü
bilinen dörtgenin alanı; ABCD dörtgeninde [AC] ve [BD] köşegen uzunlukları ile a biliniyor |
![]() |
|
![]() |
|
![]() |
| 4. Köşegenleri ve köşegenlerinin arasındaki açısının ölçüsü bilinen içbükey dörtgenin alanı;[AC] ve [BD] köşegenleri ile köşegen doğruları arasındaki a biliniyor ise ABCD içbükey dörtgeninin alanı;
|
![]() |
| 5. Köşegenleri dik kesişen dörtgenlerin kenarları arasındaki bağıntı; ABCD dörtgeninde [AC] ^ [BD] |
![]() |
Köşegenleri dik olan dörtgenlerin karşılıklı kenarlarının kareleri toplamı eşittir.
ABCD dörtgeninde |
![]() |
| 6. Dörtgenlerde köşegenlerin ayırdığı alanlar; ABE ve ADE üçgenlerinin yükseklikleri eşit olduğundan alanlarının oranı tabanlarının oranına eşittir. | ![]() |
| 7. Dörtgenlerde kenarların orta noktalarının birleştirilmesiyle oluşan paralelkenar; ABCD dörtgeninde kenarların orta noktaları birleştirilerek oluşan KLMN dörtgeni paralelkenardır. Paralelkenarın alanı dörtgenin alanının yarısına eşittir.[KL] // [BD] // [MN] ve |KL| = |MN| = [LM] // [AC] // [KN] ve |LM| = |KN| = |
![]() |
- Köşegenleri dik kesişen dörtgenlerde, kenarların orta noktaları birleştirilerek elde edilen dörtgen, dikdörtgendir.
|
|
[AC] ^ [BD] ve K, L, M, N kenarların orta noktaları ise KLMN dikdörtgendir.
Size Yardımcı Oldu Mu?
5 / 2





















