Belirsiz İntegral

A. DİFERANSİYEL KAVRAMI

x in sonsuz küçük değişimi dx şeklinde gösterilir. Buna x değişkeninin diferansiyeli denir.

Fonksiyondaki değişim dy ile gösterilir.

dy = f ‘(x)dx ifadesine y = f(x) fonksiyonunun diferansiyeli denir.

 

B. BELİRSİZ İNTEGRAL

Türevi f(x) veya diferansiyeli f(x)dx olan F(x) fonksiyonuna f(x) in belirsiz integrali denir ve

      

şeklinde gösterilir.

 sembolüne integral işareti, f(x) fonksiyonundan F(x) + c fonksiyonunun bulunmasını sağlayan işleme integral alma işlemi,

F(x) + c fonksiyonuna da f(x) in ilkel fonksiyonu denir.

 

Uyarı

f(x) in integralini bulmak, türevi f(x) e eşit olan fonksiyonu bulmaktır.

 

 

C. ıNTEGRAL ALMA KURALLARI

Kural

¹ 0 olmak üzere,

      

 

Kural

 

Kural

 

Kural

 

Kural

 

Kural

 

Kural

 

Kural

 

 

D. ıNTEGRAL ALMA YÖNTEMLERı

1. Değişken Değiştirme Yöntemi

ıntegrali alınan fonksiyon f(u)du gibi daha basit bir ifadeye dönüştürülerek integral alınır.

 

Kural

¹ –1 olmak üzere,

 

Kural

 

Kural

den başka köklü ifade içermeyen fonksiyonların integralini hesaplamak için, x = a × sint değişken değiştirmesi yapılır.

 

Kural

den başka köklü ifade içermeyen fonksiyonların integralini hesaplamak için,  değişken değiştirmesi yapılır.

 

Kural

den başka köklü ifade içermeyen fonksiyonların integralini hesaplamak için,

x = a × tant

değişken değiştirmesi yapılır.

 

Kural

 köklü ifadelerini içeren fonksiyonların integrallerini hesaplamak için

E.k.o.k.(m, n) = p

olmak üzere,

ax + b = tp

değişken değiştirmesi yapılır.

 

 

2. Kısmî ıntegrasyon Yöntemi

u = f(x)

v = g(x)

olsun. u × v nin diferansiyeli,

d(u × v) = du × v + dv × u

olur. Buradan,

× dv = d(u × v) – v × du

olur. Her iki tarafın integrali alınırsa,

Uyarı

Kısmî integralde u nun ve dv nin doğru seçilmesi çok önemlidir. Seçim doğru yapılmazsa, çözüme yaklaşmak yerine, çözümden uzaklaşılır.

Türev ve integral alma bilgileri ışığında, seçim sezgisel olarak yapılabilir. Ancak, kolaylık sağlayacağı için aşağıdaki kuralı göz önüne alabilirsiniz.

 

Kural

      

integrallerinde;

seçimi yapılır.

seçimi yapılır.

 

Sonuç

  n bir doğal sayı olmak üzere,

     

  f(x) bir polinom fonksiyon olmak üzere,

     

 

 

3. Basit Kesirlere Ayırma Yöntemi

P(x) ve Q(x) ortak çarpanı olmayan iki polinom olsun.

 integrali, vereceğimiz iki yöntemden biriyle sonuçlandırılır.

 

a. P(x) in derecesi Q(x) in derecesinden büyük ya da eşit ise;

P(x) in derecesi Q(x) in derecesinden büyük ya da eşit ise P(x), Q(x) e bölünür.

b. P(x) in derecesi Q(x) in derecesinden küçük ise;

P(x) in derecesi Q(x) in derecesinden küçükse ifade basit kesirlere ayrılır.

 

4. Trigonometrik Özdeşliklerden Yararlanarak ıntegral Alma Yöntemi

Kural

sin x ve cos x in çift kuvvetlerinin çarpımı biçimindeki integrallerde şu iki özdeşlik kullanılır:

 

Kural

      

biçimindeki integralleri aşağıdaki özdeşlikler yardımıyla sonuçlandırırız.

      

Size Yardımcı Oldu Mu?

1 / 1

Bir yanıt yazın 0

Your email address will not be published. Required fields are marked *


Bu site, istenmeyenleri azaltmak için Akismet kullanıyor. Yorum verilerinizin nasıl işlendiği hakkında daha fazla bilgi edinin.