TRİGONOMETRİK FONKSİYONLAR
A. KOSİNÜS FONKSİYONU
Bir x reel sayısını cosx e dönüştüren fonksiyona kosinüs fonksiyonu denir.
Birim çember üzerinde P(x, y) noktası ile eşlenen açı olmak üzere, P noktasının apsisine, a reel (gerçel) sayısının kosinüsü denir ve cosa ile gösterilir.
x = cosa dır.
Kosinüs fonksiyonunun görüntü kümesi (aralığı), [–1, 1] dir. Yani, her için, –1 £ cosa £ 1 dir. |
B. SİNÜS FONKSİYONU
Bir x reel sayısını sinx e dönüştüren fonksiyona sinüs fonksiyonu denir.
Birim çember üzerinde P(x, y) noktası ile eşlenen açı olsun. P noktasının ordinatına, a reel (gerçel) sayısının sinüsü denir ve sina ile gösterilir.
y = sina
Sinüs fonksiyonunun görüntü kümesi (aralığı), [–1, 1] dir. Yani, her için, –1 £ sina £ 1 dir. |
Sonuç
şekilde,
A(1, 0) olduğundan, cos0° = 1 ve sin0° = 0 dır.
B(0, 1) olduğundan, cos90° = 0 ve sin90° = 1 dir.
C(–1, 0) olduğundan, cos180° = –1 ve sin180° = 0 dır.
D(0, –1) olduğundan, cos270° = 0 ve sin270° = –1 dir.
Kural
şekilde,
x = cosa, y = sina
|OK| = sina ve
|OH| = cosa olduğuna göre, OHP dik üçgeninde;
|OH|2 + |PH|2 = 12
cos2a + sin2a = 1 dir.
C. TANJANT FONKSİYONU
Birim çember üzerinde P(x, y) noktası ile eşlenen açı olsun. [OP nın x = 1 doğrusunu kestiği T noktasının ordinatına, a reel (gerçel) sayısının tanjantı denir ve tana ile gösterilir.
x = 1 doğrusuna tanjant ekseni denir.
t = tana dır. |
D. KOTANJANT FONKSİYONU
Birim çember üzerinde P(x, y) noktası ile eşlenen açı olsun. [OP nın y = 1 doğrusunu kestiği K noktasının apsisine, a reel (gerçel) sayısının kotanjantı denir ve cota ile gösterilir.
y = 1 doğrusuna kotanjant ekseni denir.
c = cota |
Sonuç
(T.sız: Tanımsız)
Koordinat Sisteminde, Birim Çemberdeki Dört Bölgeye Göre Kosinüs ve Sinüs Fonksiyonlarının işaretleri
Kural
Uyarı
cosa nın işaretinin sina nın işaretine bölümü cota nın işaretini; sina nın işaretinin cosa nın işaretine bölümü tana nın işaretini verir.
4 bölgede de tana ile cota nın işareti aynıdır.
Size Yardımcı Oldu Mu?
2 / 0